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｜賴志煌教授：量子物理講義｜ 

【Chapter 9Statistical Distributions】 

 

【9.1 Statistical Distributions】 

 number of particles of energy ε  

n(ε ) = g(ε )f(ε ) 

g(ε ) = number of states of energyε  

= statistical weight corresponding to energyε  

f(ε ) = distribution function 

= average number of particle in each state of energyε  

= probability of occupancy of each state of energyε  

 Three different kinds of particles 

(1) Identical particles, distinguishable, ex：molecules of gas 

little or negligible overlap for wave functions => 

Maxwell-Boltzman distribution 

(2) Identical particles of 0 or integer spin, indistinguishable 

wave function overlap. => bosons, not obey exclusion 

principle. => Bose-Einstein distribution. ex：photons => 

symmetric wave function. 
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(3) Identical particles of odd half integer spin (
2

5
,

2

3
,

2

1
,…) 

indistinguishable => fermions. Obey exclusion principle 

=> Fermi-Dirac distribution, ex：e’ =>antisymmetric 

wave function



 3 

【9.2 Maxwell-Boltzman Statistics】 

For classical particles 

  kT

MB
Aef    average number of particles  

MB
f  in a 

state of energyε  

A：depends on number of particles in system analogous to 

normalization constant 

k =1.381×10-23 J/K =8.617×10-5 eV/K 

=>     kTeAgn   total number particles that have energyε  

see ex 9.1 & 9.2
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【9.3 Molecular Energy in an Ideal Gas】 

Consider a continuous distribution of molecular energies instead 

of discrete set ,...,,
321
  

If n(ε )dε  is the number of molecules whose energies lie 

betweenε &ε +dε  

=>             deAgfdgdn kT
 

first find g(ε )dε , number of states that have enegy betweenε

&ε +dε  

A molecule of energyε has a momentum P whose magnitude p 

is specified by  

2

z

2

y

2

x
pppm2p   

each set of momentum components px, py, pz specifies a 

different state of motion. 

 

Figure 9.1 (see textbook) The coordinates in momentum space are pz.  The number of momentum 

states available to a p with a momentum whose magnitude is between p+dp is proportional to the 

volume of a spherical s momentum space of radius p and thickness dp 

※References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, RandyHarris.Quantum 

Physics of atoms, molecules,Solids,nuclei and Particles. Eisberg & Resnick 
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＊ Consider momentum space, see fig 9.1, 

Number of states g(p)dp with momentum whose magnitude 

are between p & (p+dp)  

=> g(p)dp4π 2p·dp = Bp2dp (B：constant) 

∵each p → single energyε  

 g(ε )dε  betweenε  & (ε +dε ) the same as g(p)dp 

 g(ε )dp = Bp2dp 

∵p2 = 2mε  => 





m2

md
dp  

    dBm2dg 2

3

 

   


deCdn kT  ( ttanconsABm2C 23  ) 

 

 To find C, 

  


 deCdnN kT

00
 

aa2

1
dxex ax

0




  
kT

1
a   

=>  2

3

kT
2

C
N   =>

  2
3

kT

N2
C




  

  
 









de
kT

N2
dn kT

2
3
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see fig 9.2 

 
Figure 9.2 (see textbook) Maxwell-Boltzmann energy distribution for the molecules of an ideal gas.  

The average molecular energy is kT
2

3
 . 

※References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, RandyHarris.Quantum 

Physics of atoms, molecules,Solids,nuclei and Particles. Eisberg & Resnick 

 

Total energy    dE n





0

 

 









 de
kT

N2
kT

0

2
3

2
3

 

 
  










 kTkT

4

3

kT

N2 2

2
3

 

NkT
2

3
  

 average molecular energy kT
2

3
  independent of 

molecule’s massε at RT~0.04 eV eV
25

1
  
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Figure 9.3 (see textbook) Maxwell-Boltzmann speed distribution. 

※References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, 

RandyHarris.Quantum Physics of atoms, molecules,Solids,nuclei and Particles. Eisberg & Resnick 

 

 

*Distribution of Molecular Speeds 

2mv
2

1
   dε =mvdv 

=>   dvev
kT2

m
N4dvvn kT2mv2

2
3

2











  see fig 9.3 

kT
2

3
mv

2

1 2   => 
m

kT3
vv 2

rms
  
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Figure 9.4 The distributions of molecular speeds at 298K (from wikipedia) 

※References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, RandyHarris.Quantum 

Physics of atoms, molecules,Solids,nuclei and Particles. Eisberg & Resnick 

 

*Most probable speed 
 

0
dv

vdv
  

=> 
m

kT2
v

p
  (smaller than v  & 2v ) 

*Consider two particle 1,2, 

two states 1,2, 

   21
baI

  

   12
baII

  

for Bosons         1221
2

1
babaB

   symmetric 

for distinguishable particle 
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for Fermions         1221
1

baba

2

F



  

antisymmetric 

*Consider both particles in the same state a 

(1) for distinguishable particles, both 
III

&  become 

   21
aaM

  

        2121
aaaaMM

   

(2) for bosons 

            21
2

2
2121

2

1
aaaabaB

  

   212
aa

  

       
MMaaaaBB

221212    

 the presence of particle in a certain quantum state 

increases the probability that other particles are to be 

found in the same state. 

(3) for fermions 

         02121
2

1
aaaaF

  

 the presence of particle in a certain state presents any 

other particles from being in that state. 
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Figure 9.5 (see textbook) A comparison of the three distribution functions fir α=-1.  The 

Bose-Einstein function is always higher than the Maxwell-Boltzmann one, which is a pure exponential, 

and the Fermi-Dirac function is always lower.  The functions give the probability of occupancy of a 

state energy ε at the absolute temperature T. 

※References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, RandyHarris.Quantum 

Physics of atoms, molecules,Solids,nuclei and Particles. Eisberg & Resnick 

 

 

*Bose-Einstein distribution 

 
1ee

1
f

kT
BE







 

*Fermi-Dirac distribution 

 
1ee

1
f

kT
FD







 α ：depends on properties of system and 

may be function of T 

*Whenε >>kT, both case → MB 
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*When ε =-2kT,  
2

1
f

FD
  

This energy is called Fermi energy kT
f

  

=>  
 

1e

1
f

kTFD
F 




 

 
Figure 9.6 (see textbook) Distribution function for fermions at three different temperatures.  (a)At 

T=0, all the energy states up to the Fermi energy εF are occupied.  (b) At a low temperature, some 

fermions will leave states just below εF and move into states just above εF. (c) At a higher temperature, 

fermions from any state below εF may move into states above εF. 

※References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, RandyHarris.Quantum 

Physics of atoms, molecules,Solids,nuclei and Particles. Eisberg & Resnick 
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*Consider T = 0 

Forε <ε F, 1
1e

1
f

FD






 

Forε >ε F, 0
1e

1
f

FD






 

*at T = 0, all energy states up toε F are occupied, and none 

aboveε F 

The highest state to be occupied have energyε =ε F 

See fig 9.6 & table 9.1 

 

Figure 9.7 (see textbook) Each point in j space corresponds to a possible standing wave. 

※References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, RandyHarris.Quantum 

Physics of atoms, molecules,Solids,nuclei and Particles. Eisberg & Resnick 

 

*Rayleigh-Jeans formula (for black body radiation) 

Radiation must consist of standing em waves 

 a node needs to occur at each wall in any direction 
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 the path length from wall to wall = an integer number j of 

half-wavelengths. 

,...3,2,1
L2

j
x




  

,...3,2,1
L2

j
y




   =>

2

2

z

2

y

2

x

L2
jjj 










  

,...3,2,1
L2

j
z




  

 

 

Figure 9.8 (see textbook) The greenhouse effect is important in heating the earth’s atmosphere.  

Much of the short-wavelength visible light from the sun that reaches the earth’s surface is reradiated as 

long-wavelength infrared light that readily absorbed by CO2 and H2O in the atmosphere.  Some 

energy also reaches rather than from above by the sun.  The total energy that the earth and its 

atmosphere radiate into space on the average equals the total energy that they receive from the sun. 

※References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, RandyHarris.Quantum 

Physics of atoms, molecules,Solids,nuclei and Particles. Eisberg & Resnick 
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To constant number of standing wave g(λ )dλ  within the 

cavity whose wavelengths lie betweenλ &λ +dλ  

 

 constant number of permissible sets of jx, jy, jz values 

If j is a vector from the origin to a particular point jx, jy, jz, 

its magnitude is 2

z

2

y

2

x
jjjj   

    djjdjj4
8

1
2djjg 22 








  

 







 d
c

L2
dj

c

L2L2
j  

  









 
 d

c

L8
d

c

L2

c

L2
dg 2

3

32

 

The cavity volume is L3 

 density of standing waves in a cavity 

   
3

2

3 c

d8
dg

L

1
dG


  

 

 

 

 

Only count first Octant 
Two perpendicular directions of polarization 
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＊ Classical Theory 

Use oscillator => average energy kT  

      dGdu  

3

2

c

kTd8 
  Rayleigh-Jeans formula. 

u(ν )↑ withν 2↑ => wrong !! 

* Planck radiation law 

assume oscillators’ energy ε n=nkν  

he used Maxwell-Boltzman distribution 

number of oscillators with energy kT

n

n

e


  

 
1e

h

kT
h







 

    
1e

d

c

h8
dGdu

kT
h

3

3







 

＊ Harmonic oscillator have energy 









 h

2

1
n

n
, not nh  

including zero-point energy h
2

1
 

   is not equal to 
1e

h

kT
h






 

if MB statistics are used. 
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 Consider em waves in a cavity as a photon gas subject to 

Bose-Einstein statistics. 

The average number of photons f(ν ) in each state of energy 

ε =hν  is given by B-E statistics. 

Photon distribution function 

 
1e

1
f

kT
h





 (α = 0) 

        dfGhdu  

1e

d

c

h8

kT
h

3

3







 

○ Wien’s Displacement Law 

Find λ max at given temperature for which the energy 

density is the greatest. 

 solve du(λ )/dλ = 0 for λ =λ max 

 965.4
kT

hc

max




 

 Km10898.2
965.4

hc
T 3

max
   

 the peak in the blackbody spectrum shifts to shorter 

wavelengths (higher frequency) as the temperature is 

increased. 
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*Stefan-Boltzman Law 

Total energy density u 

  44

33

45

0
aTT

hc15

k8
duu 


 



 

total energy density 4T  

 radiated energy R by an object per second per unit area is 

4T  

 Stefan-Boltzman Law： 4TeR   

428 KmW1067.5
4

ac
   

 

The emissivity e depends on the nature of radiating surface. 
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【9.7 Specific Heats of Solids】 

Molar specific heat of a solid at constant volume Cv  

 Energy that must be added to 1 Kmol of the solid, whose 

volume is held fixed, to raise its temperature by 1 K. 

 The internal energy of a solid, resides in the vibrations of its 

constituent particles. These vibrations may be resolved into 

components along three perpendicular axes. => use three 

harmonic oscillators. 

 Each atom in a solid should have 3kT of energy. 

 Classical internal energy of solid 

E = 3N0kT = 3RT 

 Kmolkcal97.5R3
T

E
C

v

v













  (Dulong-Petit law) 

 

＊ However, for light elements as B, Be, C 

Cv << 3R  at 20℃ 

And when T → 0  all solid Cv → 0 

See figure at P.320 

Einstein’s Law 

The basic flaw for Dulong-Petit Law → kT for   
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Einstein proposed average energy per oscillator   

 
1e

h
fh

kT
h







 (average phonon energy per one 

direction by Debye model) 

 internal energy of solid 

1e

hN3
N3E

kT
h

0

0







 

 2kT
h

kT
h2

v

v

1e

e

kT

h
R3

T

E
C









 



















 

○ at high temperature, hν <<kT 

 
kT

h
1e kT

h 




 

 R3CkT
v
   (Dulong-Petit values) 

at high T, the spacing hν  between possible energies is 

small relative to kT =>ε is almost continuous 

 classical physics holds. 

*at T↓↓ => Cv↓ 

∵when T decreases, spacing between possible energies↑↑ 

inhibits the possession of energies above zero-point energy 

Why the zero-point energy does not enetr this analysis? 

∵
v

v

T

E
C 












  zero-point energy  h

2

1
0

function of T
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【9.8 Free Electron in Metal】 

*If e’ behave like the molecules of an ideal gas => each would 

have kT
2

3
, kinetic energy 

 RT
2

3
kTN

2

3
E

0e
  

 R
2

3

T

E
C

v

e

ve













  

 total specific heat R
2

9
R

2

3
R3C

v
  at high T 

But, 3R holds for high T. Why?? e’ do not contribute to Cv 

 

*for e’, average occupancy per state 

   

1e

1
f

kT
FD F





 

now, we would like to find g(ε )dε ,number of quantum 

states available to e’ betweenε &ε +dε  

same as number of standing waves. 

g(j)dj = π j2dj 




L2
j for e’ mE2p&

p

h
  

h

mE2L2

h

Lp2L2
j 


  


 d

m2

h

L
dj  
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   


 d
h

mL28
dg

3

2
3

3

 

   


 d
h

Vm28
dg

3

2
3

 

 

*Femi energy 

Ε f = highest state to be filled 

∵each state is limited to one e’ 

∴   2
3

f3

2
3

0 h3

Vm216
dgN

f




 


 

 
3

2
2

f

V8

N3

m2

h










  

(N/V is the density of free e’)
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【9.9 Electron-Energy Distribution】 

     
 

 
1e

dhmV28
dfgdn

kT

32
3

f 





 

=>  
 

 
1e

d2N3
dn

kT

2

3

f

f 








  see fig 9.10 

*The total energy E0 at 0 K 

   


dnE
f

00
 

 
0ee

kTf  
 

 
f0

2

3

2

3

f0
N

5

3
d

2

N3
E

f

 




 

 average energy for e’ at T = 0 
f0

5

3
  

＊ The temperature of an ideal gas whose molecules have an 

average kinetic energy of 1 eV is 11,600 K. But ε f ~ 

several eV. 

A sample of Cu would have to be at T > 50,000 K for its e’ 

to have the same energy at T = 0 K. 

＊ The failure of free e’ in a metal to contribute appreciably to 

Cv is due to the energy distribution. 

When a metal is heated, only e’ hear theε f (ε -ε f ~ several 

kT) can be excited to higher state. 
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 R
kT

2
C

f

2

ve 











  

at room temperature, 0021.0016.0kT
f




 very small 

*Ony if T is very low => Cve become significant ( 3

v
TC   but 

TC
ve
 ) 

*Or if T is very high => Cv →3R but Cve↑↑ 


