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/4 [Chapter 9statistical Distributions)

[ 9.1 Statistical Distributions]

number of particles of energy €
n(e )=g(e )f(e )
g(e ) = number of states of energye
= statistical weight corresponding to energye
f(e ) = distribution function
= average number of particle in each state of energye
= probability of occupancy of each state of energye
Three different kinds of particles
(1) Identical particles, distinguishable, ex : molecules of gas
little or negligible overlap for wave functions =>
Maxwell-Boltzman distribution
(2) ldentical particles of 0 or integer spin, indistinguishable
wave function overlap. => bosons, not obey exclusion
principle. => Bose-Einstein distribution. ex : photons =>

symmetric wave function.



(3) Identical particles of odd half integer spin ( g)

N |~
N W

indistinguishable => fermions. Obey exclusion principle
=> Fermi-Dirac distribution, ex : e’ =>antisymmetric

wave function



[9.2 Maxwell-Boltzman Statistics)
For classical particles
f . (e)=Ae" average number of particles f () ina
state of energye
A : depends on number of particles in system analogous to
normalization constant
k =1.381x10™ J/K =8.617x10" eV/K
=> n(e)=Ag(g)e” total number particles that have energye

seeex 9.1 & 9.2



[9.3 Molecular Energy in an Ideal Gas])

Consider a continuous distribution of molecular energies instead
of discrete set ¢ ,¢,,¢,,...

If n(e )de is the number of molecules whose energies lie
betweene &g +de
=>n(e)de = [g(e)de][f(e)|= Agle)e *'de
first find g(e )de , number of states that have enegy betweeng
&e +de
A molecule of energye has a momentum P whose magnitude p

Is specified by

p=+2me=/p: +p’ +p’
each set of momentum components py, py, p; specifies a

different state of motion.

Figure 9.1 (see textbook) The coordinates in momentum space are p,. The number of momentum
states available to a p with a momentum whose magnitude is between p+dp is proportional to the
volume of a spherical s momentum space of radius p and thickness dp

sxReferences:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, RandyHarris.Quantum
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* Consider momentum space, see fig 9.1,
Number of states g(p)dp with momentum whose magnitude
are between p & (p+dp)
=> g(p)dpocdtr *p-dp = Bp?dp (B : constant)
"."each p — single energye
= g(¢ )de betweene & (¢ +de ) the same as g(p)dp
= g(e )dp = Bp’dp

mde

pP=2me  => dp=
2me

= g(e)de = ZBmg\/Eds

= n(e)de =Cvee “"de  (C=2m**AB=constant)

® To find C,

N = ["n(e)de = C[ /e "de

jot"\/;e‘e‘xdx:i T ooa 1

2a \a B KT
C 3 21N
=> N=—+nlkT): =>C= 2
2 ( ) (TckT)/2

= n(e)de = ZLNy Jee "de
(nkT)>



see fig 9.2
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Figure 9.2 (see textbook) Maxwell-Boltzmann energy distribution for the molecules of an ideal gas.
= 3
The average molecular energy is & = E KT .
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Total energy E=["z"(cHe
21N

_ % _%T
(TCkT)/ I ° de
27'CN 3 2
= S NKT
2

= average molecular energy €= g KT independent of

molecule’s masse at RT~0.04 eV = 2i5eV



v

Vv

/{2 = root-mean-square speed =/3kT/n
V = average speed= /8kT/m
¥ = most probable speed= /2kT/m
Figure 9.3 (see textbook) Maxwell-Boltzmann speed distribution.

s%¢References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics,
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*Distribution of Molecular Speeds

€ :%mvz de =mvdv

%
=> n(v)dv = 471:N( j vie ™™ dv  see fig 9.3

21kT

2 2 m




Maxwell-Boltzmann Molecular Speed Distribution for Noble Gases
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Figure 9.4 The distributions of molecular speeds at 298K (from wikipedia)
% References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, RandyHarris.Quantum
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*Most probable speed d\(;_(v) =0
Y

=> v = 2KT (smallerthan v & +/v?)
m

*Consider two particle 1,2,

two states 1,2,
¢, =0,[1)o,(2)

¢, =9,(2)0,1)

for distinguishable particle

for Bosons o, = %[(p Do, (2)+o,(2)p,1)]  symmetric




for Fermions ¢, =~ [¢, (0, (2)-9,(2)o,(1)

2

antisymmetric
*Consider both particles in the same state a

(1) for distinguishable particles, both ¢, & ¢, become
¢, =¢,L)e,(2)
> 0,0, =, L), (2)e, L), (2)

(2) for bosons
0, =510, 00.(2)+0.0)0, (2] = 0,00,
=/29,(1),(2)

0,95 = 29, (L), (2), W, (2) = 29,0,

= the presence of particle in a certain quantum state
increases the probability that other particles are to be
found in the same state.

(3) for fermions

= the presence of particle in a certain state presents any

other particles from being in that state.



Maxwell-Boltzmann

Bose-Einstein

Fermi-Dirac
0 kT 2kT 3KT 4KT 5kT
Energy, €

Figure 9.5 (see textbook) A comparison of the three distribution functions fir a=-1. The
Bose-Einstein function is always higher than the Maxwell-Boltzmann one, which is a pure exponential,
and the Fermi-Dirac function is always lower. The functions give the probability of occupancy of a
state energy ¢ at the absolute temperature T.
sx¢References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, RandyHarris.Quantum
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*Bose-Einstein distribution

1
fBE E)=——F—
( ) ee’m _1

*Fermi-Dirac distribution

1

=, a depends on properties of system and
e‘e’ +1

f.o(e)

may be function of T

*Whene >>KT, both case — MB
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*When ¢ =-2KT, f_(¢)=

N |-

This energy is called Fermi energy g, =—akT

1
=> fFD (8) - m

REg————
Ny =0

0.5

f(€)
=
WTS,"’

0
E, €
(b)

1.0 &
= [
0.5 ——

0

Figure 9.6 (see textbook) Distribution function for fermions at three different temperatures. (a)At
T=0, all the energy states up to the Fermi energy & are occupied. (b) At a low temperature, some
fermions will leave states just below e and move into states just above &g. () At a higher temperature,
fermions from any state below ¢z may move into states above &.
sx¢References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, RandyHarris.Quantum

Physics of atoms, molecules,Solids,nuclei and Particles. Eisberg & Resnick
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*Consider T=0

Fore <e ¢, f_ = 1 =1
e”" +1
1
Fore >¢ ¢ f_ = =0
e”+1

*at T =0, all energy states up toe ¢ are occupied, and none
abovee ¢
The highest state to be occupied have energye =¢ ¢
See fig 9.6 & table 9.1

j,
10

wn

0 5 0 jy

Figure 9.7 (see textbook) Each point in j space corresponds to a possible standing wave.

% References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, RandyHarris.Quantum
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*Rayleigh-Jeans formula (for black body radiation)
Radiation must consist of standing em waves

= a node needs to occur at each wall in any direction
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= the path length from wall to wall = an integer number j of

half-wavelengths.

jx =& =1’2,3,...
A

. 2L P+P+1 2

=—=1,2131"' => 2+ 2+ 2= Y

Jy }\’ Jx Jy JZ }\_‘

jz =& =1,2,3,...
A

Reflected b comi
eflectedby = (00 Transmitted through SPACE

atmosphere
and surface = atmosphere
S 6% Given off by

atmosphere

Figure 9.8 (see textbook) The greenhouse effect is important in heating the earth’s atmosphere.

Much of the short-wavelength visible light from the sun that reaches the earth’s surface is reradiated as

long-wavelength infrared light that readily absorbed by CO, and H,O in the atmosphere. Some

energy also reaches rather than from above by the sun.  The total energy that the earth and its

atmosphere radiate into space on the average equals the total energy that they receive from the sun.
s References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, RandyHarris.Quantum

Physics of atoms, molecules,Solids,nuclei and Particles. Eisberg & Resnick
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To constant number of standing wave g(A )dA  within the

cavity whose wavelengths lie betweenA &A +dA

= constant number of permissible sets of j, j,, j, values

If j is a vector from the origin to a particular point jy, jy. Jz,
its magnitude is j=./j: + . + ]

N A V.
g(i)di= 2@(4’“ dj) = nj’d]
L~ Only count first Octant
Two perpendicular directions of polarization

cj=tboty g2ty
A C

vidv

2ij22L 8nL?

g(v)dv = n(— —dv=—
C C C

The cavity volume is L3

= density of standing waves in a cavity

1 g(v)d\; _ 8ntv dV

14



* Classical Theory
Use oscillator => average energy € =KkT
= u(v)dv =eG(v)dv

_ 8nvkTdv
C3

Rayleigh-Jeans formula.

u(v )1 withv 21 =>wrong !
* Planck radiation law
assume oscillators’ energy € ,=nkv

he used Maxwell-Boltzman distribution

number of oscillators with energy ¢, oc ef%
o 5 hth
e /kT _1
o u(v)dv = G(v)dv = o v dv
C e kT _1

* Harmonic oscillator have energy

€, :(n +%)hv, not nhv
: : : 1
including zero-point energy Ehv

. h
= ¢ isnotequal to h/_v
e’ -1

iIf MB statistics are used.
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= Consider em waves in a cavity as a photon gas subject to
Bose-Einstein statistics.
The average number of photons f(v ) in each state of energy
€ =hv is given by B-E statistics.

Photon distribution function

1
f\/:hv— G:O
W)= @=0

= u(v)dv = hvG(v)f(v)dv

_8nh vidv
¢’ e _1

(O Wien’s Displacement Law
Find A . at given temperature for which the energy

density is the greatest.

= solve du(A )/dA =0for A =N

hc
KTA,

=4.965

> % T=_C _5898x10°m.K
4.965

max

= the peak in the blackbody spectrum shifts to shorter
wavelengths (higher frequency) as the temperature is

Increased.
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*Stefan-Boltzman Law

Total energy density u

. 8r°k*

total energy density oc T*

= radiated energy R by an object per second per unit area is
o« T*
= Stefan-Boltzman Law : R =ecT"’

o= % ~5.67x10° W/m® - K"

The emissivity e depends on the nature of radiating surface.

17



[9.7 Specific Heats of Solids]
Molar specific heat of a solid at constant volume C,,
= Energy that must be added to 1 Kmol of the solid, whose
volume is held fixed, to raise its temperature by 1 K.
= The internal energy of a solid, resides in the vibrations of its
constituent particles. These vibrations may be resolved into
components along three perpendicular axes. => use three
harmonic oscillators.
= Each atom in a solid should have 3kT of energy.
= Classical internal energy of solid

E = 3NokT = 3RT

= C, = (2—5) =3R =5.97 kcal/mol - K (Dulong-Petit law)

\

* However, for light elements as B, Be, C
C,<<3R at20C
AndwhenT — 0 allsolidC, — 0
See figure at P.320

Einstein’s Law

The basic flaw for Dulong-Petit Law — KT for &

18



Einstein proposed average energy per oscillator €
g=hvf(v)=——— (average phonon energy per one

direction by Debye model)

= internal energy of solid

_ 3N hv
e 1

OE hv) e’
c~(5) =) o

(O at high temperature, hv <<kT

E=3N,

0

> " =14 hv
KT
= e~=kT—>C, 6 =3R (Dulong-Petit values)

at high T, the spacing hv  between possible energies is
small relative to KT =>¢ is almost continuous
= classical physics holds.
*atT| 4 =>Cyy
"."when T decreases, spacing between possible energies 1 1
inhibits the possession of energies above zero-point energy

Why the zero-point energy does not enetr this analysis?

C, = (2—5) zero-point energy ¢, = % hv =function of T

\%
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[9.8 Free Electron in Metal)

*If ¢’ behave like the molecules of an ideal gas => each would
3 N
have 5 KT, Kinetic energy

& E. =SNKT=>RT
2 2

= C, =(8Eej :§R
= \aTr ), 2
3

= total specific heat C, =3R +E R= % R athighT

But, 3R holds for high T. Why?? e’ do not contribute to C,,

*for ¢’, average occupancy per state

1
fFD(S = Tl
) e( Ve +1

now, we would like to find g(¢ )de ,number of quantum
states available to ¢’ betweene &g +de
same as number of standing waves.

g()dj =  jdj

j:%fore’ Kz%&pzx/ﬁ

dj=—
A h h h

20

j_2L_2Lp_2L«/2mE . L /2_md8
e



8\/_7'C|_ \/_dS

= d
gle)de ===
%
= g(e)de = M%x/gds

*Femi energy

E ¢ = highest state to be filled

"."each state 1s limited to one €’

% 3
8)18 = 16\/—?;:]\3/m 8?

N=["g(

2 %
NRTED
2m\ 8V

(N/V is the density of free e”)
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[9.9 Electron-Energy Distribution]

8\/2nV m%/h3 ede
oo gl s - B2V e
=> n(e)de = @ N(/ _2);;2 Jede see fig 9.10
e +1
*The total energy Egat 0 K

E, =["en(e)de
e M =g~ =0
> E, = 3—N8f_23j gide = Ne,

2 ° 5

= average energy fore’at T=0 8_0 = gsf

* The temperature of an ideal gas whose molecules have an
average kinetic energy of 1 eV is 11,600 K. But € ¢~
several eV.

A sample of Cu would have to be at T > 50,000 K for its €’
to have the same energy at T = 0 K.

* The failure of free e’ in a metal to contribute appreciably to
C, is due to the energy distribution.

When a metal is heated, only e’ hear thee ¢ (€ -€ ¢~ several

KT) can be excited to higher state.
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ve 2 8

f

= C =“—(k—T]R

at room temperature, k% ~(0.016-0.0021  very small

*Ony if T is very low => C,, become significant (C, o« T® but

C,oxcT)

*Or if T is very high =>C, —3R but Ce 1 /
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